3 Complex Numbers


module  Complex ( 
    Complex((:+)), realPart, imagPart, conjugate, 
    mkPolar, cis, polar, magnitude, phase ) where

infix  6  :+
data  (RealFloat a)     => Complex a = !a :+ !a
realPart, imagPart      :: (RealFloat a) => Complex a -> a
conjugate	        :: (RealFloat a) => Complex a -> Complex a
mkPolar		        :: (RealFloat a) => a -> a -> Complex a
cis		        :: (RealFloat a) => a -> Complex a
polar		        :: (RealFloat a) => Complex a -> (a,a)
magnitude, phase        :: (RealFloat a) => Complex a -> a
instance  (RealFloat a) => Eq         (Complex a)  where ...
instance  (RealFloat a) => Read       (Complex a)  where ...
instance  (RealFloat a) => Show       (Complex a)  where ...
instance  (RealFloat a) => Num        (Complex a)  where ...
instance  (RealFloat a) => Fractional (Complex a)  where ...
instance  (RealFloat a) => Floating   (Complex a)  where ...

Complex numbers are an algebraic type. The constructor (:+) forms a complex number from its real and imaginary rectangular components. This constructor is strict: if either the real part or the imaginary part of the number is bottom, the entire number is bottom. A complex number may also be formed from polar components of magnitude and phase by the function mkPolar. The function cis produces a complex number from an angle t. Put another way, cis t is a complex value with magnitude 1 and phase t (modulo 2pi).

The function polar takes a complex number and returns a (magnitude, phase) pair in canonical form: The magnitude is nonnegative, and the phase, in the range (- pi , pi ]; if the magnitude is zero, then so is the phase.

The functions realPart and imagPart extract the rectangular components of a complex number and the functions magnitude and phase extract the polar coordinates of a complex number. Also defined on complex numbers is the conjugate function conjugate.

The magnitude and sign of a complex number are defined as follows:


abs z		  =  magnitude z :+ 0
signum 0	  =  0
signum z@(x:+y)   =  x/r :+ y/r  where r = magnitude z
That is, abs z is a number with the magnitude of z, but oriented in the positive real direction, whereas signum z has the phase of z, but unit magnitude. (abs for a complex number differs from magnitude only in type.)

3.1 Library Complex



module Complex(Complex((:+)), readPart, imagPart, conjugate, mkPolar,
               cis, polar, magnitude, phase)  where

infix  6  :+

data  (RealFloat a)     => Complex a = !a :+ !a  deriving (Eq,Read,Show)

realPart, imagPart :: (RealFloat a) => Complex a -> a
realPart (x:+y)  =  x
imagPart (x:+y)  =  y

conjugate        :: (RealFloat a) => Complex a -> Complex a
conjugate (x:+y) =  x :+ (-y)

mkPolar          :: (RealFloat a) => a -> a -> Complex a
mkPolar r theta  =  r * cos theta :+ r * sin theta

cis              :: (RealFloat a) => a -> Complex a
cis theta        =  cos theta :+ sin theta

polar            :: (RealFloat a) => Complex a -> (a,a)
polar z          =  (magnitude z, phase z)

magnitude, phase :: (RealFloat a) => Complex a -> a
magnitude (x:+y) =  scaleFloat k
                     (sqrt ((scaleFloat mk x)^2 + (scaleFloat mk y)^2))
                    where k  = max (exponent x) (exponent y)
                          mk = - k

phase (x:+y)     =  atan2 y x

instance  (RealFloat a) => Num (Complex a)  where
    (x:+y) + (x':+y')   =  (x+x') :+ (y+y')
    (x:+y) - (x':+y')   =  (x-x') :+ (y-y')
    (x:+y) * (x':+y')   =  (x*x'-y*y') :+ (x*y'+y*x')
    negate (x:+y)       =  negate x :+ negate y
    abs z               =  magnitude z :+ 0
    signum 0            =  0
    signum z@(x:+y)     =  x/r :+ y/r  where r = magnitude z
    fromInteger n       =  fromInteger n :+ 0

instance  (RealFloat a) => Fractional (Complex a)  where
    (x:+y) / (x':+y')   =  (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
                           where x'' = scaleFloat k x'
                                 y'' = scaleFloat k y'
                                 k   = - max (exponent x') (exponent y')
                                 d   = x'*x'' + y'*y''

    fromRational a      =  fromRational a :+ 0

instance  (RealFloat a) => Floating (Complex a) where
    pi             =  pi :+ 0
    exp (x:+y)     =  expx * cos y :+ expx * sin y
                      where expx = exp x
    log z          =  log (magnitude z) :+ phase z

    sqrt 0         =  0
    sqrt z@(x:+y)  =  u :+ (if y < 0 then -v else v)
                      where (u,v) = if x < 0 then (v',u') else (u',v')
                            v'    = abs y / (u'*2)
                            u'    = sqrt ((magnitude z + abs x) / 2)

    sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
    cos (x:+y)     =  cos x * cosh y :+ (- sin x * sinh y)
    tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
                      where sinx  = sin x
                            cosx  = cos x
                            sinhy = sinh y
                            coshy = cosh y

    sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
    cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
    tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
                      where siny  = sin y
                            cosy  = cos y
                            sinhx = sinh x
                            coshx = cosh x

    asin z@(x:+y)  =  y':+(-x')
                      where  (x':+y') = log ((-y:+x) + sqrt (1 - z*z))
    acos z@(x:+y)  =  y'':+(-x'')
                      where (x'':+y'') = log (z + ((-y'):+x'))
                            (x':+y')   = sqrt (1 - z*z)
    atan z@(x:+y)  =  y':+(-x')
                      where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))

    asinh z        =  log (z + sqrt (1+z*z))
    acosh z        =  log (z + (z+1) * sqrt ((z-1)/(z+1)))
    atanh z        =  log ((1+z) / sqrt (1-z*z))

Next section: Ix
The Haskell 1.3 Library Report